Wake Vortex Encounter Gust Size and Magnitude Flight Data

A P Brown
Flight Research Laboratory,
NRC Aerospace

presented to
WakeNet3-Europe 2nd Major Workshop
Developments in wake Turbulence Safety
Toulouse, 28th/29th June, 2010
Presentation

– Flight data (NRC program)
– Context of gust size/rise/fall-lengths and magnitudes (gust peak speeds)
– Example of flight data
 – Continuous turbulence
 – Rise/fall analysis
 – Discrete (turbulent trailing vortex cores)
CONTEXT – Proceeding to a definition of an acceptable WVE:

- Requires design & certification of structure, aeroservoelasticity, systems, aerodynamics; *in turn*

 - Requires definition of WVE gust magnitudes and rise-lengths, for the formulation of design standards: -
 - Discrete gusts, *and*
 - Continuous gust spectra

 - Combination (superposition)?
 - Not presently required for aircraft gust-load certification
In which WVE realms:

- Both following realms are desirable:
 - Improvement upon existing landing-approach WT separation standards, and
 - Establishment of enroute WT separation standards
 - both involve $t_{\text{WAKE}} [40:120]$ seconds
 - wake vortex trailing pair probably have turbulent cores, may be in significant individual or/and mutual instability state
 - flight data has both dissipative turbulence scale and intensifying turbulent scales, which are more likely to be core instability modes
EXAMPLE – Trailing pair crossplane-referenced vortex-induced wind perturbations
Trailing pair crossplane
Continuous gust spectra

PSD of longitudinal gustiness, vortex core traverses

- Flight data, 8-15 nm wake length, 53-90 sec age
- FAR 25, App. F with $U_\sigma = 85$ fps with $\sigma = 85/3.5$ fps

WakeNet, 3 EU, Toulouse, 28th/29th June, 2010
Continuous gust spectra

- FAR 25 for typical weight/dim 50-70,000 lb transport a/c

PSD of lateral gustiness, vortex core traverses

flight data, 8-15 nm wake length, 53-90 sec age
FAR25, App.F with \(U_\sigma = 85 \text{ fps with } \sigma = 85/3.5 \text{ fps} \)
Continuous gust spectra
Rise and fall magnitudes & lengths (peaks and troughs counting) of w_{CZ}
Rise and fall magnitudes & lengths of w_CZ normalised
WVE - discrete vortex core traverses:

Modelling of gust-rise/fall shape
– depends upon extent of asymptotic V_T rise
– examine flight data traverses
Vortex core traverses:

\[\Gamma_{\text{GEN}} \approx 735 \text{ m}^2/\text{s} \]

- Wake age, \(t = 53 \text{ sec} \)
- Wake length 7.5 nm, \(\Gamma = 630 \text{ m}^2/\text{s} \)
- advance/recede tails overlay
- Superposition of mean + turbulent, peak \(V_T > 20 \text{ m/s} \) (66 fps)
Vortex core traverse #2:
- Wake age, t = 58 sec
- Wake length 8 nm
- $\Gamma = O[630]$ m2/s
- Sec features away from core edges
Vortex core traverse #3:
- Wake age, $t = 60$ sec
- Wake length 8.4 nm
- $\Gamma = O[620]$ m2/s
- Lower turbulence, B-H models well
Vortex core traverse #4:
- Wake age, \(t \approx 68 \text{ sec} \)
- Wake length 9.5 nm
- \(\Gamma = \mathcal{O}[600] \text{ m}^2/\text{s} \)
- large \(V_T \) near core edge
Vortex core traverse #5:
- Wake age, \(t = 74 \) sec
- Wake length 10.4 nm
- \(\Gamma = O[580] \) m²/s
- Secondary vortex, \(V_\Gamma \sim r^{1/5} \) profile

WakeNet, 3 EU, Toulouse, 28th/29th June, 2010
Vortex core traverse #6:
- Wake age, $t = 76$ sec
- Wake length 10.6 nm
- $\Gamma = \mathcal{O}[570] \text{ m}^2/\text{s}$
- Secondary vortex

WakeNet, 3 EU, Toulouse, 28th/29th June, 2010
Vortex core traverse No. 7:
- Wake age, $t = 90$ sec
- Wake length, 12.6 nm
- $\Gamma = O[380]$ m2/s
Vortex core traverse No.8:

- Wake age, \(t = 101 \) sec
- Wake length, 14.2 nm

\[\Gamma = O[360] \text{ m}^2/\text{s} \]
Conclusions:

– WVE, present & future occur with trailing vortices likely turbulent, incl. cores

– Have considered WVE gust size & magnitude 8-20nm wake survey flight data, from the viewpoints of
 – Continuous turbulence spectra loading, for helices around & through vortices
 – \(\Omega(v_Z) \) of the order of magnitude of FAR 25 design limit spectra; and
 – Rise/fall peaks & troughs analysis (typ. For fatigue loading)
 – groupings of gust rise/falls into a number of discrete non-dim rates
 – Possibility of normalising by generator
 – discrete vortex core traverse size/magnitude profiles
 – Examined eight profiles in detail:- for each , mean + turbulent \((V_T'/V_T) \)
 \([50-100\%]\) flow superposition evident; peak \(V_T > 66 \) fps, FAR limit mag.
 – Line vortex (Rankine) model, &
 – Burnham-Hallock model – generally \((7/8 \text{ times})\) under-estimated \(V_T \) at core edges – for the good ID, core traverse had low turbulence content;
 – Line vortex model captured core edge \(V_T \) augmentation by sec vortices, implying non-dissipative in nature, core-stability driven?

Further examination of existing & future data warranted.
QUESTIONS?