Flight Testing the Wake Encounter Avoidance and Advisory system: First results

Dr. Fethi Abdelmoula, Tobias Bauer
DLR Institute of Flight Systems

WakeNet-Europe Workshop 2013
Content

- Background
 DLR Internal Project WOLV
- Motivation and Objectives
 Wake Encounter Advisory & Avoidance (WEAA) System
- WEAA System Architecture
- WEAA Functional System Breakdown
- First Results
- Summary
Background

- DLR Project WOLV
 - Developing weather and wake vortex expert systems along with operational concepts for the air traffic management and control at airports
 - Researching new sensors and delivering automated flight control and innovative flight crew information technologies for the aircraft
Motivation

- system for **tactical small-scale evasion** from wake vortices to avoid possibly hazardous wake encounters
- **pure safety net** function (no means of defining separation)
- however, supports reduction of separation distances by providing mitigation measures
- pilots’ **situational awareness** is key issue
- evasion **without ATC request** (similar to TCAS)
 \[\rightarrow \text{stay within navigation limits} \]
- DLR objectives:
 system proof-of-concept, in-depth investigation of selected components
WEAA Objectives and Constraints

- **System Design Objectives**
 - Increase the pilots’ situational awareness in case of a predicted, imminent or even current encounter
 - Define, guide and monitor evasive manoeuvres (where possible)

- **Manoeuvre Design Constraints**
 - Evasion without ATC request, within navigation limits
 - Generally 4-D manoeuvre (adjustment of speed, track, flight path angle) possible but
 - ATC compatibility of speed changes
 - Manoeuvre should be kept as simple as possible
 - No conflict with TCAS and/or (E)GPWS/TAWS generated
 - Aircraft performance
 - Passenger comfort (accelerations)
WEAA System Architecture: Functions

- Predict wake vortices from flight state and planned trajectories of surrounding aircraft using meteorological data
- Detect wake conflicts, using prediction of own trajectory, in connection with hazard assessment where required
- Generate evasion trajectory, taking into account terrain data and surrounding traffic
- Generate overview display to increase pilot’ situational awareness (e.g. on ND and VSD)
- Alert flight crew and guide required evasive manoeuvres (e.g. on PFD and VSI)
WEAA System Architecture: Block diagram

- terrain data base
- traffic data
- met data
- sensor data
- flight plan
- a/c status
- evasion manoeuvre definition

WEAA Core System

- Terrain Avoidance
- Traffic Prediction
- Wake Vortex Detection / Prediction
- Wake Vortex Conflict Detection & Assessment
- Conflict Resolution
- HMI (Information)
 - Audio
 - Display
- AFS (or Pilot)
 - Manoeuvre Execution

- Flight Guidance (performance / restraints)

Monitoring
WEAA Functional System Breakdown

Sensors / Data Sources
- ADS-B (I/M)S-B
- ADIRU (WMS ?)
- EGPWS / TAWS
- FMS
- FMGC

Data Preparation
- Decoding
- Range Filter
- Signal Conditioning
- Wind vector
- Own flight state
- Flight plan
- P mode
- Configuration
- Mass
- RNP
- XTK error
- G/S, LOC where necessary
- Terrain Data (class a: terrain / ground proximity)

Detection/Prediction
- 4-D Trajectory Prediction (surrounding traffic)
- Wake Vortex detection and Characterisation
- Wake Vortex Evasion Prediction
- 4-D Wake Vortex Evasion Prediction
- Flight Performance Data (RAA ?)

Conflict Detection and Evaluation
- Safety Zone Traffic (for definition of evasion trajectory)
- Conflict Detection (Wake Vortex)
- Hazard Assessment (terrain, sink rate)
- Definition and Generation of Evasion Trajectory (type of manoeuvre, generation of trajectory)

Conflict Resolution
- Command generation
- Implementation of avoidance measures
- Convtarget target values

Legend
- Audio
- Display
- N/O
- VSI
- PFDR
- FMA

WEAA System Boundary

Additional Notes
- Wake vortex and traffic situation
- Increased situational awareness
- Wake vortex and traffic evolution prediction
- Wake vortex detection and characterisation
- Prediction of own trajectory
- Safety zone traffic (for definition of evasion trajectory)
- Flight phase dependent restraints (width of corridor, ground proximity)
- Flight performance (flight phase dependent, altitude)
- Flight phase dependent restraints (width of corridor, ground proximity)
- Ground proximity
- Further meteo data
- Flight plan
- A/P mode
- Configuration
- Mass
- RNP
- XTK error
- G/S, LOC where necessary
- Terrain Data (class a: terrain / ground proximity)

Diagram Details
- FMGS
- 4-D Trajectory Prediction (surrounding traffic)
- HMI (Information)
- Wake vortex and traffic situation
- Increased situational awareness
- Command generation
- Wake Vortex Hazard Assessment (e.g. hazard area, SHAPe)
System Integration for Flight Tests

ADS-B Data:
- Position (Latitude, Longitude, Altitude)
- Ground Speed
- True Airspeed
- True Heading
- Wind Speed
- Wind Direction
- Aircraft Status

Modification:
- **Falcon**
 - UHF Telemetry
- **ATRA**
 - UHF Telemetry, ADS-B Receiver,
 WEAA Workstation, Audio, Display,
 Guidance
ADS-B Receiver

![ADS-B Receiver Image]

ADS-B Client V1.0

Received A/G: 62

<table>
<thead>
<tr>
<th>ICAO</th>
<th>Add Ident</th>
<th>Latitude Deg</th>
<th>Longitude Deg</th>
<th>Alt (ft)</th>
<th>UNS Kts</th>
<th>VEW Kts</th>
<th>Uvert ft/Min</th>
<th>AS Kts</th>
<th>Heading Deg</th>
</tr>
</thead>
<tbody>
<tr>
<td>4G054</td>
<td>RVR194</td>
<td>53.003354</td>
<td>10.709004</td>
<td>100</td>
<td>37</td>
<td>36</td>
<td>-120</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>400129</td>
<td>ARP3007</td>
<td>52.401212</td>
<td>14.402992</td>
<td>35000</td>
<td>120</td>
<td>400</td>
<td>-6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>400183</td>
<td>EZV54LG</td>
<td>51.729994</td>
<td>12.363950</td>
<td>39025</td>
<td>-99</td>
<td>446</td>
<td>-64</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4619F6</td>
<td>FIM27M</td>
<td>52.509476</td>
<td>13.721362</td>
<td>35025</td>
<td>335</td>
<td>315</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3565F5</td>
<td>GJI5051</td>
<td>52.490534</td>
<td>11.516497</td>
<td>19600</td>
<td>17</td>
<td>376</td>
<td>-240</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4245E7</td>
<td>SDG245</td>
<td>51.112335</td>
<td>11.643058</td>
<td>28375</td>
<td>-199</td>
<td>-382</td>
<td>-960</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4564E8</td>
<td>SAS7225</td>
<td>51.553940</td>
<td>9.558100</td>
<td>39765</td>
<td>-399</td>
<td>-130</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4064E8</td>
<td>BNK9060</td>
<td>51.241972</td>
<td>11.722193</td>
<td>36975</td>
<td>-112</td>
<td>446</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>406602</td>
<td>DLH44PP</td>
<td>52.416952</td>
<td>10.956023</td>
<td>29350</td>
<td>420</td>
<td>-56</td>
<td>-220</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4734E0</td>
<td>MZT401</td>
<td>51.872134</td>
<td>10.192566</td>
<td>36000</td>
<td>55</td>
<td>411</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4832E0</td>
<td>BNH886</td>
<td>51.334579</td>
<td>11.145481</td>
<td>37000</td>
<td>-114</td>
<td>-447</td>
<td>-64</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4833E0</td>
<td>KZP804</td>
<td>52.502247</td>
<td>9.699515</td>
<td>37000</td>
<td>-4</td>
<td>460</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4334F1</td>
<td>MLUPS</td>
<td>52.942976</td>
<td>9.502860</td>
<td>32400</td>
<td>-329</td>
<td>-56</td>
<td>2048</td>
<td>323</td>
<td>183.2</td>
</tr>
<tr>
<td>461F31</td>
<td>FIM4222F</td>
<td>52.295929</td>
<td>12.501063</td>
<td>39000</td>
<td>307</td>
<td>353</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4G0B8C</td>
<td>RVR5578</td>
<td>53.063740</td>
<td>10.297241</td>
<td>36000</td>
<td>-399</td>
<td>-159</td>
<td>64</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>458D1A</td>
<td>LOG2561</td>
<td>52.519747</td>
<td>10.237658</td>
<td>31000</td>
<td>-19</td>
<td>466</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4G0EC6</td>
<td>RVR5642</td>
<td>53.686873</td>
<td>12.393722</td>
<td>37225</td>
<td>-312</td>
<td>-157</td>
<td>3136</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4564CO</td>
<td>SAS566</td>
<td>54.593345</td>
<td>9.391453</td>
<td>37025</td>
<td>329</td>
<td>341</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>400E5C</td>
<td>EZV69NY</td>
<td>51.652734</td>
<td>9.503021</td>
<td>39025</td>
<td>-62</td>
<td>458</td>
<td>64</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4656CB</td>
<td>SAS3563</td>
<td>52.297948</td>
<td>11.624869</td>
<td>40000</td>
<td>405</td>
<td>198</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>464536</td>
<td>KLH703</td>
<td>52.585780</td>
<td>9.628270</td>
<td>39000</td>
<td>61</td>
<td>461</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3D03C2</td>
<td>DME229</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4GA226</td>
<td>RVR2665</td>
<td>53.150031</td>
<td>9.470619</td>
<td>39000</td>
<td>-39</td>
<td>456</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3G1384</td>
<td>AIB52A</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4GA7D3</td>
<td>RVR3066</td>
<td>53.297614</td>
<td>10.524195</td>
<td>36000</td>
<td>-300</td>
<td>-107</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4G08C1</td>
<td>KLM6163</td>
<td>51.989431</td>
<td>9.663148</td>
<td>35000</td>
<td>-121</td>
<td>445</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3D09DE</td>
<td>BPO6303</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3G83DE</td>
<td>DBTL</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3G1354</td>
<td>D-AUZB</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4249BD</td>
<td>AFI2342</td>
<td>52.873806</td>
<td>12.719092</td>
<td>32100</td>
<td>-67</td>
<td>-426</td>
<td>-960</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>456947</td>
<td>UT2263</td>
<td>54.059092</td>
<td>9.652470</td>
<td>35000</td>
<td>326</td>
<td>339</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7666CC</td>
<td>SqC7419</td>
<td>51.371232</td>
<td>9.792404</td>
<td>36000</td>
<td>210</td>
<td>-415</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Messages:

Press Q <STOP>, R <REFRESH>
Display Concepts
First Results: Flight Track
Flight Tests: Film
Flight Tests: Film
First Results

- DLR Falcon 20 (D-CMET) fulfilled its role as wake generating aircraft satisfactorily.
- The telemetry link between Falcon and ATRA worked well.
- ATRA flown behind Falcon:
 - Wakes vortices were hit, angles for intercepting of the contrails were varied.
 - Flight in lining up with vortices was performed, light turbulences were observed during this manoeuvre.
 - Wakes vortices were also hit from above and below, Rate Of Descent and Rate Of Climb were varied.
- ATRA flown a predefined flight profile, which enabled different angles for intercepting of the contrails to hit the wakes vortices.
- Processing of received traffic data and (simplified) wake vortex prediction worked during the flights.
Summary

- Flight Test Equipment successfully installed
- WEAA concept successfully tested under real conditions
- ADS-B data link provided the necessary information
- Predefined profiles flown for Wake Vortex Detection/Prediction
- Wake vortex position determined by intentional encounters for validation of the wake vortex prediction model, accelerometers and ADC give more details about the wake
- Predefined profiles flown for Wake Vortex 4D conflict prediction
- Recorded data will be used for simulator and offline tests and to improve WEAA modules and displays (ND, PFD, VSD).
- Conflict resolution in flight is subject for the next campaign.