Validation of Wake Vortex Encounter Simulation Models Using Flight Test Data

Dietrich Fischenberg
DLR Institute of Flight Systems
Braunschweig

Workshop
WakeNet2-Europe, Working Group 5, Hamburg, 10-11 May 2004
Scope of Presentation

- flight tests, measurements, and data

- flight test data analysis performed within the S-WAKE project:
 - determination of vortex model parameters to characterize vortex flow field
 - validation of flight mechanic/aerodynamic interaction models

- summary
Statistics of Full Scale Flight Encounter

<table>
<thead>
<tr>
<th>Date</th>
<th>Encounter A/C</th>
<th>Altitude</th>
<th>Encounter flown</th>
<th>Flap setting of wake generating A/C</th>
<th>DLC-flap setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.8.2001</td>
<td>Dornier Do128</td>
<td>FL 95</td>
<td>27</td>
<td>14°, 35°</td>
<td>const.</td>
</tr>
<tr>
<td>21.8.2001</td>
<td>Dornier Do128</td>
<td>FL 95</td>
<td>15</td>
<td>14°, 1°</td>
<td>split, oscillating</td>
</tr>
<tr>
<td>15.3.2002</td>
<td>Cessna Citation</td>
<td>FL 150</td>
<td>25</td>
<td>14°</td>
<td>const.</td>
</tr>
<tr>
<td>22.3.2002</td>
<td>Dornier Do128</td>
<td>FL 100</td>
<td>25</td>
<td>14°, 35°</td>
<td>const.</td>
</tr>
</tbody>
</table>

total 116
Wake Generating Aircraft ATTAS

ATTAS with extended flaps

smoke generator in action

smoke trace, constant DLC flaps

smoke trace, oscillating DLC flaps
Encounter Aircraft

Dornier Do 128 (TU-BS)
4 flow probes (5 hole probes)

Cessna Citation II (NLR)
1 flow probe (vanes)
Encounter Maneuver

- wake generation
- smoke trace
- 0.5 nm
- 1.5 nm
- 3.0 nm
Flight Test Encounter Scenario
Do128 Typical Encounter Flow Sensor Measurements

horizontal velocity, wake system

vertical velocity, wake system

m/s

noseboom
right wing
left wing
vertical tail

time, s
The 2 Steps of Encounter Flight Test Data Evaluation

Step 1: Flow Field Characterization
- **Vortex Model**
- **Flight Path Reconstruction (FPR)**
- Flow measurements

Step 2: Encounter Model Validation
- Basic A/C aero model
- Aerodynamic interaction model
- Pilot's control inputs
- Forces, moments
- ∆ forces, ∆ moments
- Outputs

Outputs:
- Accelerations, rates, attitude, altitude, velocity

Model Accuracy

Flow Measurements:
- Accelerations, rates, attitude, altitude, velocity
Validation Basic Do128 Model - no Wake Vortex Influence

- Lateral acceleration
- Vertical acceleration
- Roll rate
- Pitch rate
- Yaw rate
- Bank angle
- Pitch angle
- Yaw angle

measured vs. model output
Determination of Vortex Model Parameters: \textit{Rosenhead - B \& H}

- Identified:
 - $\Gamma = 115.3 \text{ m}^2/\text{s}$
 - $r_c = 0.90 \text{ m}$
 (=4.2\% wing span)

Horizontal velocity measurements vs. model output for:
- Noseboom sensor
- Right wing sensor
- Left wing sensor
- Vertical tail sensor

Vertical velocity measurements vs. model output for:
- Noseboom sensor
- Right wing sensor
- Left wing sensor
- Vertical tail sensor

Distance: 0.8 nm
Determination of Vortex Model Parameters: *Winckelmans*

- horizontal velocity
- vertical velocity
- measured
- model output

Identified:
- \(\Gamma = 152 \text{ m}^2/\text{s} \)
- \(r_c = 0.22 \text{ m} \)
 (=1% wing span)

distance: 0.6 nm
Do128: Comparison of Different Vortex Models

Circulation

Core Radius
- Rosenhead - Burnham & Hallock
- Lamb-Oseen
- Proctor - Winckelmans

Vortex Separation

Max. Tangential Velocity
Aerodynamic Interaction Models

Strip Method (SM)
ONERA

Lifting Surface Method (LSM)
TU Berlin
Validation of *Strip Method (SM)*: Simulation of ATTAS/Do128 Wake Vortex Encounters

Encounter 1: right → left

Encounter 2: left → right

<table>
<thead>
<tr>
<th></th>
<th>measured</th>
<th>simulation model output</th>
</tr>
</thead>
<tbody>
<tr>
<td>lateral accel.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vertical accel.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>roll rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pitch rate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Encounter 1: right → left

Encounter 2: left → right

<table>
<thead>
<tr>
<th></th>
<th>measured</th>
<th>simulation model output</th>
</tr>
</thead>
<tbody>
<tr>
<td>yaw rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bank angle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pitch angle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yaw angle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Institute of Flight Systems
Validation of *Lifting Surface Method (LSM)*: Simulation of ATTAS/Do128 Wake Vortex Encounter

Encounter 1: right ➔ left

Encounter 2: left ➔ right

Measured vs Simulation Model Output

- **Lateral Acceleration**
 - Measured: **3 M/s²**
 - Simulation Model Output: **3 M/s²**

- **Vertical Acceleration**
 - Measured: **20 M/s²**
 - Simulation Model Output: **20 M/s²**

- **Roll Rate**
 - Measured: **-50 DEG/S**
 - Simulation Model Output: **-50 DEG/S**

- **Pitch Rate**
 - Measured: **10 DEG/S**
 - Simulation Model Output: **10 DEG/S**

- **Yaw Rate**
 - Measured: **15 DEG/S**
 - Simulation Model Output: **15 DEG/S**

- **Bank Angle**
 - Measured: **-15 DEG**
 - Simulation Model Output: **-15 DEG**

- **Pitch Angle**
 - Measured: **50 DEG**
 - Simulation Model Output: **50 DEG**

- **Yaw Angle**
 - Measured: **-20 DEG**
 - Simulation Model Output: **-20 DEG**

- **Time, s**
 - Start: **0 s**
 - End: **20 s**

Institute of Flight Systems
Summary

- S-WAKE flight test measurements (116 encounter) are a valuable high quality data base

- Flight test data were successfully evaluated with parameter identification and flight path reconstruction techniques to determine parameters of wake vortex models (Rosenhead & Burnham-Hallock, Lamb-Oseen, Winckelmans)

- Flight test data were successfully evaluated to validate aerodynamic interaction models (AIMs) for near parallel encounter cases (strip method, lifting surface method)

- In general, both AIMs are suitable to simulate wake vortex encounters (especially roll and vertical axes). Overall, both methods show equally good results.